
EE 230
Lecture 12

Basic Feedback Configurations
Generalized Feedback Schemes

Integrators
Differentiators
First-order active filters
Second-order active filters



Input and Output Impedances with Feedback

RINF=?

ROF=?

Exact analysis :

1

1 2

Rβ =
R +R

AVV1
V1

Two-Port Nonideal Op Amp 

RIN

RO

R1

R2

Consider amplifier as a two-port and use open/short analysis method

Will find RINF, ROF, AV almost identical to previous 
calculations
Will see a  small AVR present but it plays almost no 
role since RINF is so large (effectively unilateral)

VF
1A
β

0
0F

V

RR
1+βA ( )1INF IN VR =R A β+ VRFA β

Review from Last Time



Buffer Amplifier

1OUT
V

IN

VA
V

= =

Provides a signal to a load that is not affected by a source impedance

One of the most widely used Op Amp circuits

Special case of basic noninverting amplifier with R1=∞ and R2=0 1OUT 2

IN 1

V R
V R

= +

RIN=∞

ROUT= 0

This provides for decoupling between stages in many circuits

Review from Last Time



Basic Inverting Amplifier

OUT 2

IN 1

V R-
V R

=

2

1

IN

OUT

RIN=R1

OUTIN

1 2

VV + =0
R R

ROUT= 0

Input impedance of R1 is unacceptable in many (but not all)  applications 

This is not a voltage feedback amplifier (it is a feedback amplifier) of 
the type   (note RIN is not high!)

Feedback concepts could be used to analyze this circuit but lots of detail required

Review from Last Time



Summing Amplifier
F

1
1

OUT
2

2

k
k

OUT 1 2 k

F 1 2 k

V V V V+  + +...+ =0
R R R R

F F F
OUT 1 2 k

1 2 k

R R RV  = - V  - V -...- V
R R R

• Output is a weighted sum of the input voltages
• Any number of inputs can be used
• Gains from all inputs can be adjusted together with RF
• Gain for input Vi can be adjusted independently with Ri for  1 ≤ I ≤ k
• All weights are negative
• Input impedance on each input is Ri

Review from Last Time



Generalized Inverting Amplifier

( ) ( )
( )

F

1

Z s
T s

Z s
= −

s-domain representation

Z1 and ZF can be any s-domain circuits

If Z1=R, ZF=1/sC, obtain ( ) 1T s
sRC

= −

What is this circuit?



Generalized Inverting Amplifier

( ) 1T s
sRC

= −

What is this circuit?

Consider the differential equation ( )
0

t

y K x dτ τ= ∫

( ) ( )X s
Y s  = K

s
Taking the Laplace Transform, obtain ( ) ( )

( )
Y s KT s =  = 
X s s

Thus, this circuit is an inverting integrator with a unity gain frequency of K = (RC)-1

K is the frequency where |T(jω)|=1 and is termed the Integrator Unity Gain Frequency



Inverting  Integrator

( ) 1T s
sRC

= −

( ) 1T jω
jωRC

= −

( ) 1T jω
ωRC

=

( ) 90T jω o∠ =

Unity gain frequency is 0
1ω

RC
=



Inverting  Integrator

( ) 1T s
sRC

= −

( ) ( )
0

OUT IN IN
1V V V 0

RC

t

dτ τ= − +∫Integrators are widely used !

The integrator function itself is ill-conditioned and integrators are seldom used 
open-loop

If the input has any dc component present, since superposition applies, the output would 
diverge to ±∞ as time increases

The offset voltage (discussed later) will also cause an integrator output to diverge

The ideal integrator has a pole at s=0 which is not in the LHP

RIN=R ROUT=0



Inverting  Integrator
( ) ( )

0
OUT IN IN

1V V V 0
RC

t

dτ τ= − +∫

What is the output of an ideal integrator if the input is an ideal square wave? 

Amplitude of output dependent upon RC product



Inverting  Integrator
( ) ( )

0
OUT IN IN

1V V V 0
RC

t

dτ τ= − +∫

What is the output of an ideal integrator if the input is an ideal sine wave? 

Amplitude of output dependent upon RC product



Inverting  Integrator

( ) ( )
0

OUT IN IN
1V V V 0

RC

t

dτ τ= − +∫

If VIN(0) = 0, 

Ill-conditioned nature of open-loop integrator

0
OUT DC

1V V
RC

t

dτ= − ∫

0

DC
OUT

VV 1
RC

t

dτ= − ∫

( )0tDC DC
OUT

V VV t
RC RC

τ= − = −

For any values of VDC, R, and C, the output will diverge to ± ∞

DC

OUT



Inverting  Integrator

( ) ( )
0

OUT IN IN
1V V V 0

RC

t

dτ τ= − +∫

Ill-conditioned nature of open-loop integrator

( ) ( )
1

IN 0 kV t A sin kωt+θ
k

∞

=

= +∑

Any periodic input that in which the average value is not EXACTLY 0 will have a dc component

This dc input will cause the output to diverge!



Noninverting  Integrator

( ) ( )
0

OUT IN IN
1V V V 0

RC

t

dτ τ= +∫

Obtained from inverting integrator by preceding or following with inverter

Also widely used

Same issues affect noninverting integrator

Requires more components



Lossy Integrator

IN

OUT

F

Add a large resistor to slowly drain charge off of C and prevent divergence

Allows integrator to be used “open-loop”

Changes the dc gain from -∞ to   -RF/R

But the lossy integrator is no longer a perfect integrator



What if RF is not so large?

IN

OUT

F

( ) ( )
( )

F

1

Z s
T s

Z s
= −



What if RF is not so large?

( ) ( )
( )

F

1

Z s
T s

Z s
= −

( )

2

2

1

1R
sC

1R +
sCT s

R

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠= − 2

1 2

R 1
R 1+sCR

⎛ ⎞
= −⎜ ⎟

⎝ ⎠



First-order lowpass filter with a dc gain of R2/R1

( ) 2

1 2

R 1T s
R 1+sCR

⎛ ⎞
= −⎜ ⎟

⎝ ⎠( )T jω

2

1
R C

2

1

R
R

R2 controls the pole 
(and also the dc gain)

R1 controls the dc gain
(and not the pole)



Summing  Integrator

R1
V1 VOUT

R2
V2

Rk
Vk

C

( ) 1T s
sRC

= −

OUT IN
1V V

sRC
= −

By superposition .....OUT 1 2 k
1 2 k

1 1 1V V V V
sR C sR C sR C

= − − − −

• All inverting functions
• Can have any number of inputs
• Weights independently controlled by resistor values
• Weights all changed by C

1
OUT i

i

1V V
sR C

k

i=

= −∑



R2

R1

VOUT

VIN

R

VIN

VOUT

C

OUT

IN

OUT 2

IN 1

V R= -
V R

OUT 2

IN 1

V R= 1+
V R

OUT

IN

V 1= -
V sRC

OUT

IN

V 1= +
V sRC

?

I’ve got a better 
noninverting integrator !



OUT

IN
OUT

IN

V 1= +
V sRC

?

I’ve got a better 
noninverting integrator !

( )IN OUTV sC+G =V sC

OUT

IN

V 1+sRC=
V sRC

It has a noninverting transfer function

But it is not an noninverting integrator !

But is this a useful 
circuit?



OUT

IN

This is a first-order high-pass amplifier (or filter) but the gain at dc goes to ∞
so applications probably limited.

First-Order Highpass Filter

OUT

IN

V 1+sRC=
V sRC

But is this a useful 
circuit?



( )1 OUTV sC+G  = V sC

( )1 INV sC+G  = V G

OUT

IN

V 1= +
V sRC

Requires matched resistors and matched capacitors

Actually uses a concept called “pole-zero cancellation”

Generally less practical than the cascade with an inverter

Two-capacitor noninverting integrator



Generalized Inverting Amplifier

( ) ( )
( )

F

1

Z s
T s

Z s
= −

s-domain representation

If Z1=1/sC, ZF=R, obtain ( )T s sRC= −

What is this circuit?



Generalized Inverting Amplifier

What is this circuit?

Consider the differential equation ( )dx t
y K

dt
=

( ) ( )Y s  = K s X sTaking the Laplace Transform, obtain ( ) ( )
( )

Y s
T s =  = Ks

X s

Thus, this circuit is an inverting differentiator with a unity gain frequency of K-1 = (RC)-1

K-1 is the frequency where |T(jω)|=1

( )T s sRC= −



Inverting Differentiator

( )T s sRC= −

Differentiator gain ideally goes to ∞ at high frequencies

Differentiator not widely used

Differentiator relentlessly amplifies noise

Stability problems with implementation (not discussed here)

Placing a resistor in series with C will result in a lossy differentiator that has 
some applications



First-order High-pass Filter

( ) 2

1

RT s  = - 1R +
sC

2

1

sR C = -
1+R Cs

( )
( )2

2

1

ωR C T jω = 
1+ ωR C

( )T jω

1

1
R C

2

1

R
R



Applications of integrators to solving 
differential equations

IN OUT

Standard Integral form of a differential equation

1 2 3 0... ...OUT OUT OUT OUT IN IN INX b X b X b X a X X X= + + + + + + +∫ ∫∫ ∫∫∫ ∫ ∫∫
Standard differential  form of a differential equation

' '' ''' ' ''
1 2 3 1 2 3... ...OUT OUT OUT OUT IN IN INX X X X X X Xα α α β β β= + + + + + + +

Initial conditions not shown

Can express any system in either differential or integral form



Applications of integrators to solving 
differential equations

Linear
SystemXIN XOUT

Consider the standard integral form 

1 2 3 0... ...OUT OUT OUT OUT IN IN INX b X b X b X a X X X= + + + + + + +∫ ∫∫ ∫∫∫ ∫ ∫∫

∫ ∫ ∫ ∫
INX

∫ ∫ ∫ ∫
OUTX

a0 a1 a2
a3 am

b1
b2

b3 bn

This circuit is comprised of summers and integrators
Can solve an arbitrary linear differential equation
This concept was used in Analog Computers in the past



Applications of integrators to solving 
differential equations

Linear
SystemXIN XOUT

Consider the standard integral form 

1 2 3 0... ...OUT OUT OUT OUT IN IN INX b X b X b X a X X X= + + + + + + +∫ ∫∫ ∫∫∫ ∫ ∫∫

Take the Laplace transform of this equation

1 2 3 0 1 2 3
1 1 1... ...2 3 n 2 3 m

1 1 1 1 1
s s s s s s s sOUT OUT OUT OUT n IN IN IN IN mb b b b a a a a a= + + + + + + + + + +X  X  X  X  X  X  X  X  

Multiply by sn and assume m=n   (some of the coefficients can be 0)

1 2 3 0 1 2 3... ...n n-1 n-2 n-3 n n-1 n-2 n-3s s s s s s s sOUT OUT OUT OUT n IN IN IN IN nb b b b a a a a a= + + + + + + + + + +X  X  X  X  X  X  X  X  

( ) ( )1 2 3 0 1 2 3... ...n n-1 n-2 n-3 n n-1 n-2 n-3s s s s s s s sOUT n IN nb b b b a a a a a− − − − − = + + + + +X  X  

( ) 0 1 2 3

1 2 3

...
...

n n-1 n-2 n-3

n n-1 n-2 n-3

s s s s
s s s s

OUT n

IN n

a a a a aT s
b b b b
+ + + + +

= =
− − − − −

X  
X  



Applications of integrators to solving 
differential equations

Linear
SystemXIN XOUT

Consider the standard integral form 

1 2 3 0... ...OUT OUT OUT OUT IN IN INX b X b X b X a X X X= + + + + + + +∫ ∫∫ ∫∫∫ ∫ ∫∫

( ) 0 1 2 3

1 2 3

...
...

n n-1 n-2 n-3

n n-1 n-2 n-3

s s s s
s s s s

OUT n

IN n

a a a a aT s
b b b b
+ + + + +

= =
− − − − −

X  
X  

( ) 1 1 0

1 1

...
...

n n-1

n n-1
0

s s s
s s s + 

n n

n

T s α α α α
β β β

−

−

+ + +
=

+ + +

This can be written in more standard form



Applications of integrators to filter design

Linear
SystemXIN XOUT ( ) 1 1 0

1 1

...
...

n n-1

n n-1
0

s s s
s s s + 

n m

n

T s α α α α
β β β

−

−

+ + +
=

+ + +

∫ ∫ ∫ ∫
INX

∫ ∫ ∫ ∫
OUTX

-β0

-βn-1
-βn-2

-βn-3

nα
n-1α

n-2α
n-3α

0α

Can design (synthesize) any T(s) with just integrators and summers !

Integrators are not used “open loop” so loss is not added

Although this approach to filter design works, often more practical methods 
are used



End of Lecture 12



Applications of integrators to filter design

01I
s

− 02I
s+

( )
2
0

2 2 2
0 0

I
T s

s + I s+Iα

−
=( ) 0

1 2 2
0 0

I s
T s

s + I s+Iα

−
=

( )01
OUT1 IN OUT2 OUT1

IX = - X +X +αX
s

⎛ ⎞
⎜ ⎟
⎝ ⎠

02
OUT2 OUT1

IX = X
s

⎛ ⎞
⎜ ⎟
⎝ ⎠

( )OUT1 01
1 2IN 01 0102

I sX =T s
X s + I s+I Iα

−
=

( )OUT2 0102
2 2IN 01 0102

I IX =T s
X s + I s+I Iα

−
=

This is a two-integrator-loop filter

These are 2-nd order filters

If I01=I02=I0, these transfer functions reduce to



Applications of integrators to filter design

01I
s

− 02I
s+

( )
2
0

2 2 2
0 0

I
T s

s + I s+Iα

−
=

( ) 0
1 2 2

0 0

I s
T s

s + I s+Iα

−
=

Consider T1(jω)

( ) ( )2
0

1 2
00

jωI
T jω

I -ω +jω Iα

−
=

( )
( ) ( )22

0
1 22

00

ωI
T jω

I -ω + ω Iα
=

( )1T jω

This is the standard 2nd order bandpass transfer function

Now lets determine the BW and ωP



Applications of integrators to filter design

( ) 0
1 2 2

0 0

I s
T s

s + I s+Iα

−
=

( )
( ) ( )22

0
1 22

00

ωI
T jω

I -ω + ω Iα
=

Determine the BW and ωP ( )1T jω

( )1 PT jω

( )
2

1 PT jω

( )
01T jω

ω
d

d
=

( ) 2
01

2
T jω

ω

d

d
=

( )
( ) ( )

2

22

2 2
0

1 22
00

ω I
T jω

I -ω + ω Iα
=

( ) ( ) ( ) ( ) ( )( )
( ) ( )

2 22 22

2 2
22

2
22 2 2 2 2

0 00 0 0 01
22

00

I -ω + ω I I -ω I I -ω I
T jω

I -ω + ω I

d

d

α α

ω
α

⎛ ⎞
− +⎜ ⎟

⎝ ⎠=
⎡ ⎤
⎢ ⎥
⎣ ⎦

0=

To determine ωP, must set

This will occur also when                             and the latter is easier to work with



Applications of integrators to filter design

( ) 0
1 2 2

0 0

I s
T s

s + I s+Iα

−
=

Determine the BW and ωP

( ) ( ) ( ) ( ) ( )( )
( ) ( )

2 22 22

2 2
22

2
0

22 2 2 2 2
0 00 0 0 01

22
00

I -ω + ω I I -ω I I -ω I
T jω

I -ω + ω I

d

d

α α

ω
α

⎛ ⎞
− +⎜ ⎟

⎝ ⎠= =
⎡ ⎤
⎢ ⎥
⎣ ⎦

( ) ( ) ( ) ( )( )2 22 22
22 2 2 2 2

0 00 0 0 0I -ω + ω I I =ω I I -ω Iα α
⎛ ⎞

− +⎜ ⎟
⎝ ⎠

P 0ω  = I

( )
( ) ( )2

10 0
1 P 2 2

00 0

I I
T jω

I -I + I αα
= =

It suffices to set the numerator to 0

Solving, we obtain

( )
( ) ( )22

0
1 22

00

ωI
T jω

I -ω + ω Iα
=

Substituting back into the magnitude expression, we obtain

Although the analysis is somewhat tedious, the results are clean

( )1T jω

( )1 PT jω

( )
2

1 PT jω

The 2nd order Bandpass Filter



Applications of integrators to filter design

( ) 0
1 2 2

0 0

I s
T s

s + I s+Iα

−
= ( )

( ) ( )22

0
1 22

00

ωI
T jω

I -ω + ω Iα
=

Determine the BW and ωP ( )T jω

1
α

1
2α

( ) ( ) ( ) ( )( )
( ) ( )

2 22 2

2 2
22

2
1
2

22 2 2 2 2
0 00 0 0 0

22
00

I -ω + ω I I -ω I I -ω I

I -ω + ω I

α α

α
α

⎛ ⎞
− +⎜ ⎟

⎝ ⎠=
⎡ ⎤
⎢ ⎥
⎣ ⎦

H L 0BW = ω - ω = Iα

H L 0ω ω  = I

To obtain ωL and ωH, must solve ( ) 1
21T jω
α

=

This becomes

The expressions for ωL and ωH  can be easily obtained but are somewhat messy, but
from these expressions, we obtain the simple expressions

The 2nd order Bandpass Filter



Applications of integrators to filter design

( ) 0
1 2 2

0 0

I s
T s

s + I s+Iα

−
=

Determine the BW and ωP

P 0ω  = I ( ) 1
1 PT jω

α
=

( )
( ) ( )22

0
1 22

00

ωI
T jω

I -ω + ω Iα
=

( )1T jω

( )1 PT jω

( )
2

1 PT jω

The 2nd order Bandpass Filter

( )1T jω

1
2α

1
α



Applications of integrators to filter design

( ) 0
1 2 2

0 0

I s
T s

s + I s+Iα

−
=

Determine the BW and ωP

0BW = αI
H L 0ω ω  = I

( )1T jω

1
2α

1
α

( ) 0
1 2 2

0

I s
T s

s +BWs+I

−
=

The 2nd order Bandpass Filter

Often express the standard 2nd order bandpass transfer function as



Applications of integrators to filter design

These results can be generalized

BW = a

Pω b =

( )BPT jω

K

K
2

( )BP 2
HsT s

s +as+b
=

The 2nd order Bandpass Filter

H
K= 

a



Applications of integrators to filter design

( ) 0
1 2 2

0 0

I s
T s

s + I s+Iα

−
=

Determine the BW and ωP

( )1T jω

1
2α

1
α

( ) 0
1 2 2

0

I s
T s

s +BWs+I

−
=

The 2nd order Bandpass Filter

01I
s

− 02I
s+

Can readily be implemented with a summing inverting integrator and a 
noninverting integrator



Applications of integrators to filter design

( ) 0
1 2 2

0 0

I s
T s

s + I s+Iα

−
=

Determine the BW and ωP

( )1T jω

1
2α

1
α

( ) 0
1 2 2

0

I s
T s

s +BWs+I

−
=

The 2nd order Bandpass Filter

01I
s

− 02I
s+

• Widely used 2nd order Bandpass Filter
• BW can be adjusted with RQ
• Peak gain changes with RQ
• Note no loss is added to the integrators

P 0ω  = I
0BW = αI

0
1I =

RC
BW=

RC
α

∴



Applications of integrators to filter design

( ) 0
BP 2 2

0 0

I s
T s

s + I s+Iα

−
=

Design Strategy

( )1T jω

1
2α

1
α

The 2nd order Bandpass Filter
0I
s

− 0I
s+

1. Pick C  (use some practical or convenient value)

2. Solve expression                   to obtain R

3. Solve expression                      to obtain α and thus RQ

0
1I =

RC
P 0ω  = I

P
1ω =

RC

BW=
RC
α

BW=
RC
α

∴

Assume BW and ωP are specified



Applications of integrators to filter design

Exact expressions for BW and ωP are very complicated but ωP≈I0

( )
2
0

2 2 2
0 0

I
T s

s + I s+Iα

−
=

The 2nd order Lowpass Filter

01I
s

− 02I
s+

• Widely used 2nd order Lowpass Filter
• BW can be adjusted with RQ but expression not so simple
• Peak gain changes with RQ
• Note no loss is added to the integrators

( )2T jω

ωP

ω

( )2 PT jω

( )
2

2 PT jω BW

0
1I =

RC

Design procedure to realize a given 2nd order lowpass function is straightforward



Another 2nd-order Bandpass Filter

( )1 1 2 2 3 OUT 2 IN 3V sC +sC +G +G  = V sC +V G

11 1 OUTV sC +V G  = 0

( )

( )

3 2

2

1 1 1 2 2 3 1 1 2

s
R CT s  = -

1 1 1s +s + +
R C R C R //R R C C
⎛ ⎞
⎜ ⎟
⎝ ⎠

( )

( )

3

2
2

1 2 3 1

s
R CT s  = -

2 1s +s +
R C R //R R C
⎛ ⎞
⎜ ⎟
⎝ ⎠

1

2BW = 
R C

( )P
1 2 3

1ω =
R R //R C

( )BPT jω

K

K
2

1

3

RK= 
2R

If the capacitors are matched and equal to C

Since this is of the general form of a 2nd order BP transfer function, obtain



Another 2nd-order Bandpass Filter

( )

( )

3

2
2

1 2 3 1

s
R CT s  = -

2 1s +s +
R C R //R R C
⎛ ⎞
⎜ ⎟
⎝ ⎠

1

2BW = 
R C ( )P

1 2 3

1ω =
R R //R C

( )BPT jω

K

K
2

1

3

RK= 
2R

Design Strategy

1. Pick C to some practical or convenient value

2. Solve expression                       to obtain R1

3. Solve expression                      to obtain α and thus R3

4. Solve expression                                            to obtain R2

1

2BW = 
R C

Assume BW, ωP , and K are specified

1

3

RK= 
2R

( )P
1 2 3

1ω =
R R //R C



Another 2nd-order Bandpass Filter

( )P
1 2 3

1ω =
R R //R C

( )1 2 3 OUT IN 3 OUT
sCV sC +sC +G +G  = V sC +V G V
H

+

( ) 1
OUT

1 1 OUT
V sC+G =V sC+V G

H

( )

( )( ) ( )
1

3

2
2

1 2 3 2 3 1

s H
R C H-1T s  = -

2 1s +s +
R C R //R H-1 R //R R C

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
−⎜ ⎟

⎝ ⎠

( )( )
1

1 2 3

2BW = 
R C R //R H-1

−

( )( )
1

3

1 2 3

1 H
R H-1K = 

2
R R //R H-1

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
−⎜ ⎟

⎝ ⎠

For the appropriate selection of component values, this is one of the best 2nd order 
bandpass filters that has been published

( )BPT jω

K

K
2

Termed the “STAR” biquad by inventors at Bell Labs



STAR 2nd-order Bandpass Filter

( )

( )( ) ( )
1

3

2
2

1 2 3 2 3 1

s H
R C H-1T s  = -

2 1s +s +
R C R //R H-1 R //R R C

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
−⎜ ⎟

⎝ ⎠

Implementation:

But the filter doesn’t work !

???



STAR  2nd-order Bandpass Filter
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Works fine !

Reduces to previous bandpass filter at H gets large 

Note that the “H” amplifier has feedback to positive terminal

Implementation:

???

If op amp ideal, OUT

IN

V = H
V

Will discuss why this happens later!


